
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Int. J. Numer. Meth. Fluids 31: 309–323 (1999)

A UNIFIED-GRID FINITE VOLUME FORMULATION FOR
COMPUTATIONAL FLUID DYNAMICS

SUKUMAR CHAKRAVARTHY*
Metacomp Technologies, Inc., 650 Hampshire Road, Suite 200, Westlake Village, CA 91361-2510, USA

SUMMARY

A new extremely flexible finite volume framework is presented. It is based on updating cell average values
of the dependent variables. It is embedded in a unified-grid framework that unifies the treatment of
structured and unstructured grids, single and multi-block grids, patched-aligned, patched-non-aligned
and overset grids, and various cell shapes, including hexahedra, triangular prisms and tetrahedra in three
dimensions, quadrilaterals and triangles in two dimensions and the linear element in one dimension. A
novel discretization approach has been developed to deal with unified-grid topologies. It includes a
piecewise-linear multi-dimensional non-oscillatory reconstruction procedure that is based on synergistic
utilization of polynomials at cell vertices. Least-squares reconstruction is used when necessary. The
concept of generalized neighborhoods is introduced to account for cell neighborhoods that include cells
that are not logically connected through common nodes, faces, etc. This helps in the automatic treatment
of all types of multi-block meshes. To go with such a general discretization procedure, new implicit
relaxation procedures are introduced that help achieve fast convergence to steady state solutions. The
framework has been implemented in a new CFD code (CFD++) using a finite volume formulation. The
paper presents the methodology with the help of several annotated examples taken from various
compressible and incompressible flows. Copyright © 1999 John Wiley & Sons, Ltd.
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1. THE CFD++ FRAMEWORK

The numerical framework of CFD++ is based on the following general elements:

1. Unsteady compressible and incompressible Navier–Stokes equations with turbulence
modeling, including specialization to low-speed flows. Various forms of the Navier–
Stokes equations and even other equation sets are also easily added. The examples
presented in this paper are for compressible flow.

2. Unification of structured curvilinear, and unstructured grids, including hybrids. Multi-
block structured grids can easily be imported into the flow solver. Similarly, existing
unstructured grids can be used equally easily.

3. Unification of treatment of various cell shapes, including hexahedral, tetrahedral and
triangular prism cells (three-dimensional), quadrilateral and triangular cells (two-
dimensional) and linear elements (one-dimensional). Other special cells for self-similar
flows and on-surface problems are also available.
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4. Treatment of multi-block patched-aligned (nodally connected), patched-non-aligned and
overset grids. Interblock connectivity and blanking is automatically determined. No
separate pre-processing module is necessary.

5. Total variation diminishing (TVD) discretization based on a new multi-dimensional
interpolation framework. This results in an extremely versatile discretization framework
that can handle the above mentioned cell and grid topologies seamlessly.

6. Riemann solvers to provide proper signal propagation physics. A new modification of
Roe’s Riemann solver permits great savings in memory. The total memory required for
CFD++ is similar to that for a structured grid flow solver, even though the bookkeeping
in CFD++ is very general. Various Riemann solvers and their replacement modules can
be added and used.

7. Consistent and accurate discretization of viscous terms use the same multi-dimensional
polynomial framework and memory saving implementation. Non-TVD derivatives com-
puted for inviscid terms are reused to compute viscous terms and turbulence model
discretization. This provides for additional computational efficiency.

8. Various pointwise turbulence models that do not require knowledge of distance to walls
(wall-distance-free (WDF)). These are the ideal models for multi-block (patched and
overset), unstructured grid and massively parallel approaches. They show very little
sensitivity to grid skewness. These models are also eminently suitable for separated flows
and free shear layers.

9. Versatile boundary condition implementation includes a rich variety of integrated
boundary condition types.

10. All Mach numbers can be simulated. Improved convergence to steady state solutions for
low-speed and incompressible flow cases is achieved by using various pre-conditioners.

11. Various explicit and implicit time stepping schemes are provided. The implicit schemes for
arbitrary mesh topologies are based on relaxation methods for unfactored upwind
schemes.

2. SYNOPSIS OF THE GOVERNING EQUATIONS AND THE NUMERICAL
METHOD

The conservation form of the governing differential equations currently supported by
CFD++ can be written as
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where the vector q represents the dependent conservation variables; f, g and h represent the
fluxes in the three spatial directions; and S represents the source terms. The subscripts i and
v are for the inviscid and viscous terms respectively.

2.1. Finite 6olume framework

The equations are discretized using a finite volume implementation. Assume that a compu-
tational cell with a volume, V, is known. The differential form of the equations are integrated
over this volume in the following way:&&&
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where f, g and h are now the full fluxes (viscous and inviscid taken together). The spatial terms
can be rewritten in the following way:
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Next Gauss’ and Leibnitz’s rules are applied. Gauss’s rule allows the volume integral to be
written as a surface integral and Leibnitz’s rule allows the time derivative to be taken outside
the integral with the addition of the proper term within the integral. Therefore, the equation
now can be written as
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where q̄ is the cell average of the dependent variables, n̂ is the outward pointing unit normal
and n̂t is normal movement of the control volume. These quantities are defined as:

q̄=
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n̂= n̂xj. + n̂yk. + n̂zl. ,

n̂t= −x; n̂x−y; n̂y−z; n̂z.

2.2. Spatial discretization using 6ertex-oriented multi-dimensional TVD polynomials

The integral term, �A (Fb · n̂+ n̂tq) dA, in the equations is evaluated by a mid-point rule
formula:8
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where i denotes the centroidal location of each face. This yields a second-order approximation
to the integral of the fluxes over the cell faces. In the formulation, the cell averages of the
dependent variables (conservation variables) are updated; therefore, in order to find pointwise
values at the cell face centroids, polynomials are constructed from the cell average values. If
the cell average values are used as approximations for the cell face centroidal values, then the
scheme becomes a first-order scheme. For a second-order approximation, a linear multi-dimen-
sional polynomial can be constructed in the following way:

B(x, y, z)=b0+b1(x−xc)+b2(y−yc)+b3(z−zc),

where (xc, yc, zc) is the centroid of the cell for which the polynomial is being constructed. Òne
approach taken in CFD++ is to evaluate a polynomial for each vertex of a given cell, i.e. a
vertex-oriented polynomial. For example, a tetrahedral element has four vertices and thus four
polynomial constructions. For the elements considered in CFD++, each vertex is part of
three faces in the three-dimensional case. The above polynomial has four coefficients that need
to be solved for; therefore, for each vertex, the three neighboring cells (of the three faces) are
used along with the cell itself to come up with the polynomial coefficients. Thus, a linear fit
of the four data points is achieved. For vertices where any of the faces are boundaries, a
polynomial is not initially constructed. At boundaries, after an extrapolation is done and
boundary conditions are applied, the boundary values can then be included in polynomial
evaluations. Thus, at the boundaries, two modes are used, i.e. excluding or including the
boundary points in the evaluation of the polynomials. CFD++ has the ability to construct
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least-squares polynomial for each vertex. This polynomial will fit cell average values of the
dependent variables for all cells that share the vertex node. Least-squares polynomials can also
be used to fit cell average values of the dependent variables for cells from various blocks that
contain the physical co-ordinates of a given vertex. This approach greatly facilitates the
treatment of various types of multi-block grids, including patched-non-aligned and overset
meshes.

It is well known that polynomial evaluations can introduce new minima and maxima in a
given data field. In order to avoid this phenomenon, which can cause oscillations near
discontinuities, limiters are introduced that limit the slopes by comparing them with their
counterparts from other vertex polynomials within that cell. More details of such slope-
limiting approaches can be found in [1].

The steps of the overall spatial discretization scheme can be summarized as follows:

1. Compute all vertex polynomials for a given cell.
2. Compute in-face and out-of-face Dq ’s for each face.
3. For each face compare the in-face and out-of-face quantities slope limiters.
4. Once the TVD Dq ’s are calculated for each cell face, a weighted average of these quantities

is as follows:

DqTVD=
1+f

2
(in-face)TVD+

1−f

2
(out-of-face)TVD, −15f51.

For evaluation of the viscous fluxes a simple average of all the vertex polynomials (non-TVD)
of a face are used. The derivatives of the temperature and three velocity components in the
viscous fluxes are constructed from polynomial representations of the conservation variables.
In the above discussion, a full three-dimensional case was explained. Obvious simplifications
exist for the two- and one-dimensional cases and are coded in CFD++ to achieve computa-
tional efficiency for lower dimensional problems.

Once the unlimited and limited polynomials are computed, the goal is to find the values of
the fluxes at each integration point. For each integration point, there are two possible values
from the polynomial evaluations: a value from the left (from that cell’s polynomial) and a
value from the right (from a neighboring cell). For the viscous fluxes, a simple average of the
two values of dependent variables and their derivatives is taken; however, for the inviscid
fluxes, a Riemann solver is invoked in order to insure a correct signal propagation of the
hyperbolic (inviscid) terms. More details about the traditional and modified Riemann solvers
in CFD++ are given in [1]. The above vertex-oriented approach results in a compact
discretization of derivatives at cell faces and avoids, by construction, decoupling effects that
arise in other approaches based on cell-centered multi-dimensional polynomial reconstruction.

2.3. Proximity-based neighborhoods

In evolving the CFD++ framework to meet the needs of computing with multi-block
meshes, a new and very versatile interconnection capability and the accompanying dis-
cretization have been identified. The CFD++ framework originally included the first im-
plementation of a very general multi-block capability that could handle nodally aligned
(patched-aligned), nodally non-aligned (patched-non-aligned) and overset grid capability.
However, the interconnection mechanism for this implementation was based on finding
connecting cells for cell face centroids. An improved approach based on connecting nodes with
nearby or overlying cells has been identified, implemented and tested. Since grid nodes are the
fundamental means of defining the grid, the boundaries, etc., this seemed more natural. This
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new approach also permits a very natural and versatile treatment of grid subdivisions. It also
is a perfect fit for the cell vertex-based multi-dimensional interpolation procedure that is used
in CFD++.

2.4. Vertex-oriented polynomials and hierarchical meshes

Vertex-oriented polynomials are easily adaptable to deal with hierarchically subdivided
meshes. In such meshes, adjacent mesh cells can be of different sizes. For example, in the
two-dimensional case, one mesh element face of a bigger cell can lie adjacent to two mesh
faces. In the three-dimensional case, one face may neighbor four faces. The vertex-oriented
polynomials can be used in a least-squares mode as described above. At each node, a collection
of neighboring cells (elements) is identified. These can include all cells that logically (in the
bookkeeping framework) contain that node. It can also include cells that are ‘proximal’ (near)
that node. Once proximity-based neighborhoods are included, it is very easy to deal with
hierarchy-induced cell neighborhoods. The question of formal conservation across such
intercell boundaries (faces of different sizes next to each other) is important, but the numerical
examples demonstrate the correctness of this approach. Formal consistency can be achieved by
construction, but details will be presented elsewhere because this aspect is not a primary focus
of this paper.

2.5. Vertex-oriented polynomials and intersecting meshes

The proximity-based neighborhood alluded to in the previous subsection helps deal with
intersecting (overlapped) meshes as well as patched-aligned and non-aligned meshes. A given
node is part of at least one cell in the bookkeeping data structure. For a given node, the
shortest link to any other node of cell(s) that include this node as a vertex can be found. When
proximity-based search finds a connection to another cell or cells, it can be because (a) the
other cell(s) contain the physical co-ordinates of the given node; (b) the other cells do not
contain the physical co-ordinates but a projection to the nearest cell face is found. In the latter
situation, the connection is currently deemed acceptable if this projected distance is less than
the shortest link distance defined earlier. This approach helps to find the connections across
gaps.

2.6. Implicit relaxation with pre-conditioning

An efficient scheme for solving the discretized system of the equation has been developed.
It combines three basic ideas: implicit local time stepping, relaxation and pre-conditioning.
Pre-conditioning the equations ideally equalizes the eigenvalues of the inviscid flux Jacobians
and removes the stiffness arising from large discrepancies between the flow and sound
velocities at low speeds. Use of an implicit scheme circumvents the stringent stability limits
suffered by their explicit counterparts, and successive relaxation allows update of cells as
information becomes available and thus aids convergence.

2.7. Relaxation sweeps using cell ordering

The order in which the cells are ‘swept’ in the relaxation scheme can also play a significant
role in its convergence properties. Several options have been considered:

(a) Sweep order according to cell numbers.
(b) ‘Boundaries-on-in’ ordering of cells.
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(c) Ordering starting from a specific boundary.
(d) Checkerboard (or colored) scheme numbering.
(e) Cell ordering based on eigenvalue.

3. ILLUSTRATIVE EXAMPLES

3.1. O6erset multi-block mesh

In Figure 1, a four-block mesh is presented. The four blocks are roughly associated with the
four quadrants of a rectangular region. All the blocks overlap each other. In particular, in the
neighborhood of the center of the outer rectangle, all blocks overlap each other. It is an
interesting challenge to devise a method that can transparently compute through such a mesh.
The CFD++ capability is able to solve the conservation laws (inviscid flow in this example)
through such meshes. The interblock mesh boundaries are identified as slightly darker lines.
The flow field solved corresponds to an oblique shock generated at the lower left corner of the
mesh for a Mach 2 free stream and a 10° turn. This shock wave is reflected by the upper
boundary (the particular choice of the boundary condition on the upper boundary is not
significant for present purposes). Figure 1 also shows the pressure contour lines. The results
confirm that proper shock-capturing is achieved even through such a multiply-overlapped
mesh.

3.2. Patched and o6erset multi-block mesh

The same problem is now presented using a slightly different mesh topology. The four
blocks are still to be found but not all the blocks overlay each other (Figure 2). For example,
the lower left block and upper left block are patched and not overset with respect to each
other. One can also notice that these two blocks are not nodally aligned. There is nodal
alignment between the lower left block and the lower right block. The two blocks on the right
overlap each other. The upper left block is also found to overlay the upper right block.
Pressure contour lines are also shown in Figure 2. The CFD++ implementation computes
seamlessly through such meshes. This example serves as a prototype for testing the code’s
capability to handle all types of interblock connectivities.

Figure 1. Overset mesh and pressure contours for oblique shock problem.
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Figure 2. Patched and overset mesh and pressure contours for oblique shock problem.

Figure 3. Multi-block mesh with interblock gap and pressure contours for oblique shock problem.

3.3. Patched, o6erset multi-block mesh with interblock gap

The next example is included partly for amusement and partly to illustrate a very important
aspect of the CFD++ capability. Four blocks are still used, but now we introduce a gap
between the upper left and upper right blocks. Small gaps could arise in putting grids together
with different resolution levels or even different offsets from a reference location. For example,
if one considers two different meshes on a circular cylinder (or any curved surface) that are
constructed so that all mesh points on the lower grid boundary are directly located on the
circular cylinder, one will find that sometimes one of the meshes will have lines outside the
computational domain as defined by the other mesh. While special issues arise in such
situations when one must interpolate information between such meshes, in principle, CFD++
can avoid such issues by being able to make use of appropriate information in both meshes
simultaneously. In any case, back to the situation at hand, the zonal interconnection procedure
can properly connect points on the right boundary of the upper left block with cells on the left
boundary of the upper right block, etc., based on proximity considerations. Figure 3 displays
the mesh and pressure contour lines for this case.

3.4. Laminar flow o6er flat plate

Now results are included showing the effect of such overlapped mesh treatment through
boundary layer regions of an example problem that involves laminar supersonic flow (M=2)
over a flat plate. A close-up of the overlapping mesh in the vicinity of the boundary layer is
shown in Figure 4. Axial velocity contours are displayed in Figure 5. Complete continuity in
the contour lines across zonal boundaries is seen. The velocity profile at x=0. 1, obtained
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from the numerical solution, is compared with the exact solution in Figure 6. The quality of
the agreement is evidence of the quality of the numerical procedure. It is observed here that
conventional overset mesh approaches deal with the situation as an information transfer
problem from one mesh to another. This simulation deals with overset meshes at the
discretization level directly.

Figure 7 shows the convergence history using a point-implicit (CFL 50), the relaxation
scheme using CFL 50 and two forward LHS sweeps in the streamwise direction, the other
relaxation scheme using eigenvalue-based cell ordering and two forward–backward LHS
sweeps. Roughly six orders of magnitude drop in the residual was achieved in 400 steps by the
eigenvalue-based cell ordering, even in this highly stretched grid.

Figure 4. Overset grid with overlap used for laminar flat plate calculations (M=2.0).

Figure 5. Contours of streamwise velocity for M=2.0 laminar flat plate.
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Figure 6. Comparison between velocity profiles at x=0.1 (CFD++ and exact).

Figure 7. Convergence histories for Mach 2.0 laminar flow over flat plate.

3.5. In6iscid flow o6er cylinder

A Mach 0.4 inviscid flow over a cylinder is calculated using a variety of mesh topologies.
The goal here is to demonstrate the ease with which the relaxation scheme operates within the
unified-grid framework. Four grids were chosen for this analysis: the first was a 26×26
quadrilateral grid clustered near the surface of the cylinder, the second was a finer version of
the same grid (51×51), the third a triangular mesh grid and the fourth a hybrid grid that has
a hierarchically subdivided section near the top of the cylinder. Figures 8(a)–(c) show these
mesh topologies. In all cases, the relaxation scheme was set up so that it operated at a local
CFL of 50 with two forward–backward boundaries-on-in LHS sweeps. Figure 9 shows the
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convergence characteristics on the four mesh topologies compared with a second-order
Runge–Kutta and first-order point-implicit schemes. Nearly four orders of magnitude drop in
the residual is realized within 150 steps. One should note that the leveling off seen in the
residual of the hierarchical mesh is due to the truncation error mismatch on the boundaries of
the two grids.

Figure 8. (a) Quadrilateral mesh around circular cylinder, (b) triangular mesh, (c) hierarchical mesh near cylinder.

Figure 9. Convergence histories for Mach 0.4 inviscid flow over circular cylinder.
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Figure 10. Pressure contour lines on circular cylinder mesh with local refinement.

In the case of the hierarchically refined mesh, at the junction of the fine-grid and coarse-grid
regions, a mesh cell face from the coarse part of the grid will be juxtaposed with two mesh
faces from the finer part. The usual mechanisms that automatically connect mesh faces are
geared towards finding exact matches between cells that share identically defined cell faces. All
cell faces for which a matching cell is not found (sharing the same nodes of the face) are
markable as boundary faces. A feature that automatically marks such boundary faces as
interzonal boundary faces when the user does not supply physical boundary conditions for
them has been included in CFD++. At node points that define such faces, proximity-based
connectivities are automatically performed in CFD++ using a node-oriented connection
scheme. Once again, a seamless discretization procedure results. Figure 10 displays pressure
contour lines. The result corresponds to inviscid flow with free stream Mach number of 0.4.
The fore–aft symmetry of the results and the continuous transfer of information across
coarse/fine boundaries are evident.

3.6. Circular cylinder with near-surface and Cartesian background meshes

Next illustrated is the ability to deal with more complex overset grid mesh topologies that
require the identification of nodes outside the computational domain. Figure 11 displays a
composite mesh made up of a near surface mesh around a circular cylinder and a Cartesian
background mesh. The physical domain is assumed to be outside the circular cylinder and
inside the outer boundaries of the Cartesian mesh. Many nodes of the background mesh are
inside the circular cylinder and therefore must be marked for exclusion (or blanking) along
with the cells that contain such nodes. This is achieved by a unique distance function based
approach.

Figure 11(b) shows the pressure contours obtained on this composite mesh. Note that in this
simple example, the background mesh has not been locally adapted in the vicinity of the edge
of the near-surface mesh. Additionally, the results only represent an inviscid calculation at an

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 309–323 (1999)



S. CHAKRAVARTHY320

Figure 11. (a) Near-surface and Cartesian background meshes, (b) pressure contour lines for complex overset mesh
around cylinder.
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Figure 12. Brick wall grid and pressure contours for the oblique shock problem.

early stage of a transient that occurs when a free stream subsonic flow encounters the presence
of the circular cylinder through the imposition of boundary conditions.

3.7. ‘Brick-wall’ mesh

Several examples have already been presented that show how effectively CFD++ can
handle various types of interblock and intercell connectivities. An extreme example is provided
here in which there exists no nodal connectivity between any cell in the vertical direction
(except at boundaries). Such a grid is shown in Figure 12. The flow field corresponds to an
oblique shock emanating from the lower left corner of the mesh for a free stream Mach
number of 2 and a 10° turn. The pressure contours lines obtained are also shown in Figure 12.
The shock angle and pressure rise are correctly predicted. CFD++ automatically detects the
proper neighborhood of cells at each cell vertex and appropriately uses them for evaluating the
reconstruction polynomials. This example shows that CFD++ can determine connectivity by
proximity fully automatically.

3.8. Double wedge airfoil

The next example has been chosen to illustrate how background meshes can be used as ‘glue’
to bridge gaps between other near-surface meshes. Figure 13 shows the surface geometry as
well as a single layer of near-surface cells next to it for a double wedge airfoil configuration.
The forward and aft sections of the double wedge were specified as two different sections with
no logical nodal connectivity between them (at the maximum thickness point). A close-up of
this region is shown in Figure 14. The single layer of near-surface cells is used merely to have
uncluttered plots in Figures 13 and 14. The actual near-surface mesh comprised a 10-cell width
layer.
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Figure 15 displays a close up view of a composite of both the near-surface meshes and a
background hierarchical mesh that was geometrically adapted to every boundary node of the
near surface meshes.

Figure 16 shows the composite mesh (full view) after the background mesh has been further
subdivided to produce a more refined mesh away from the double wedge surfaces. Figure 17
shows the pressure contour lines obtained on such a mesh demonstrating the ‘gluing’ ability of
background meshes of the type used here.

Figure 13. Single layer near-surface mesh on double wedge.

Figure 14. Close-up of double wedge near-surface mesh showing gap.

Figure 15. Close-up of composite mesh.
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Figure 16. Composite mesh with more refined far-field for diamond wedge airfoil.

Figure 17. Pressure contour lines on composite mesh for diamond wedge airfoil.

4. CONCLUDING REMARKS

The unified-grid methodology has been introduced along with several illustrative examples.
The main enabling feature is a multi-dimensional interpolation framework that helps deal with
all the different multi-block connectivities. More details about CFD++ can be found in [1–3].
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